Article ID Journal Published Year Pages File Type
7135405 Sensors and Actuators A: Physical 2015 13 Pages PDF
Abstract
This paper presents strain sensor arrays on flexible substrates able to measure local deformation induced by radii of curvature of few millimeters. Sensors use n-type doped microcrystalline silicon (μc-Si) as piezoresistive material, directly deposited on polyimide sheets at 165 °C. Sensitivity of individual sensors was investigated under tensile and compressive bending at various radii of curvature, down to 5 mm. A Transmission Line Method was used to extract the resistivity for each radius. The devices exhibited longitudinal gauge factors of −31 and longitudinal piezoresistive coefficients of −4.10−10 Pa−1. Reliability was demonstrated with almost unchanged resistances after cycles of bending (standard deviation of 1.7%). Strain gauge arrays, composed of 800 resistors on a 2 cm2 area, were fabricated with a spatial resolution of 500 × 500 μm2. Strain mapping showed the possibility to detect local deformation on a single resistor or to detect larger objects. These strain sensor arrays can find applications when high sensitivity and high spatial resolution is required. This paper also showed that μc-Si can be a relevant semi-conductor candidate for flexible electronics.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,