Article ID Journal Published Year Pages File Type
7135650 Sensors and Actuators A: Physical 2015 11 Pages PDF
Abstract
The design of artificial sphincters requires an accurate dimensioning of dedicated valves, normally made of polymeric materials. This effort is also interesting for developing fluid and pressure regulating solutions related to other biomedical and non-biomedical fields. In this article we focused on the parametric design of polymeric valves, by taking inspiration from commercially exploited solutions used in the food industry and performing appropriate scaling in order to make them suitable for artificial organs and components. In addition, different materials with diverse mechanical properties were considered, focusing on a low-cost fabrication approach. Finite element model analyses were conducted to simulate the behavior of different valve profiles and to predict the valve opening pressure. Simulation results were validated by comparing them with experimental results, obtained by fabricating and testing different valve types. This polymeric valve parametric analysis may be exploited for the design of artificial sphincters, having the potential to tackle urinary incontinence, a disease that affects about 350 million people worldwide.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,