Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
714496 | IFAC Proceedings Volumes | 2013 | 6 Pages |
The random sample consensus (RANSAC) algorithm is frequently used in computer vision to estimate the parameters of a signal in the presence of noisy and even spurious observations called gross errors. Instead of just one signal, we desire to estimate the parameters of multiple signals, where at each time step a set of observations of generated from the underlying signals and gross errors are received. In this paper, we develop the recursive RANSAC (RRANSAC) algorithm to solve the inherent data association problem and recursively estimate the parameters of multiple signals without prior knowledge of the number of true signals. We compare the performance of RRANSAC with several existing algorithms, and also demonstrate the capabilities of RRANSAC in an aerial geolocation problem.