Article ID Journal Published Year Pages File Type
714505 IFAC Proceedings Volumes 2013 6 Pages PDF
Abstract

The łrc;1 adaptive control scheme has proven its effectiveness and robustness in various fields thanks to its particular architecture where robustness and adaptation are decoupled. It was though noted that whenever the trajectory is varying, an inherent lag is present compared to other adaptive schemes due to the presence of a filter in the control architecture. To achieve a better tracking, we propose extending the architecture of the łrc;1 controller by augmenting it with a control input that could take the form of a nonlinear proportional or a proportional integral term. The extended scheme is validated through simulations via an illustrative example as well as experimental results performed on an underwater vehicle.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics