Article ID Journal Published Year Pages File Type
715063 IFAC Proceedings Volumes 2010 6 Pages PDF
Abstract

In case of a velocity control scheme for a load directly driven by an actuator, large variations of its parameters are problematic due to possible instability and large variations of the final performances. This performances are then decreasing if a sensorless control is implemented due to cost, reliability or application constraints. This paper proposes solutions to quickly and accurately tune an observer with a lower computer time consumption and lower conception time. A previous calculated state feedback is used as base for a Kalman filter with special noise matrices. An evolutionary algorithm optimizes the observers degrees of freedom all over the variations. The mu-analysis theory helps to cancel known unstable set of parameters before running iterations in the optimization algorithm. Experiments show that the stability and the performance are effectively maintained.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics