Article ID Journal Published Year Pages File Type
7151922 Acta Mechanica Solida Sinica 2017 9 Pages PDF
Abstract
The panel-type structures used in aerospace engineering can be subjected to severe high-frequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites (CMCs) under acoustic loadings. Firstly, the high-frequency random responses from the broadband random excitation will result in more stress cycles in a definite period of time. The probability density distributions of stress amplitudes will be different in different frequency bandwidths, though the peak stress estimations are identical. Secondly, the fatigue properties of CMCs can be highly frequency-dependent. The fatigue evaluation method for the random vibration case is adopted to evaluate the fatigue damage of a representative stiffened panel structure. The frequency effect through S-N curves on random fatigue damage is numerically verified. Finally, a parameter is demonstrated to characterize the mean vibration frequency of a random process, and hence this parameter can further be considered as a reasonable loading frequency in the fatigue tests of CMCs to obtain more reliable S-N curves. Therefore, the influence of vibration frequency can be incorporated in the random fatigue model from the two perspectives.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,