Article ID Journal Published Year Pages File Type
7151923 Acta Mechanica Solida Sinica 2017 42 Pages PDF
Abstract
This paper deals with the study of the temperature effect on the nonlinear vibration behavior of nanoplate-based nano electromechanical systems (NEMS) subjected to hydrostatic and electrostatic actuations. Using Eringen's nonlocal elasticity and Gurtin-Murdoch theory, the nonlocal plate model is derived through Hamilton's principle. The governing equation which is extremely nonlinear due to the geometrical nonlinearity and electrostatic attraction forces is solved numerically using the differential quadrature method (DQM). The accuracy of the present method is verified by comparing the obtained results with the experimental data and those in the literature and very good agreement is obtained. Finally a comprehensive study is carried out to determine the influence of temperature on the nonlinear vibration characteristics of NEMS made of two different materials including aluminum (Al) and silicon (Si) and some conclusions are drawn.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,