Article ID Journal Published Year Pages File Type
7152512 Applied Acoustics 2016 12 Pages PDF
Abstract
A numerical study of the aerodynamic and aeroacoustic behaviors of a backward curved blade centrifugal fan was conducted under two important flow conditions: BEP and 1.3 × BEP. Three-dimensional numerical simulations of the complete unsteady flow field for the whole impeller-volute configuration were used to determine the aeroacoustic sources. To locate the unsteady flow and perturbations, the near field wall pressure fluctuations at different strategic points on the volute were computed using the URANS approach. Thus the intensities and positions of the aeroacoustic sources were identified by analyzing frequency spectra. The aeroacoustic sources caused by fluctuations in the interactions of the flows leaving the impeller and volute were close to the volute tongue, and the most effective noise sources related to the flow rate were near the impeller shrouds. In addition, the unsteady flow variables provided by CFD calculations were used as inputs in the Ffowcs Williams-Hawkings equation to estimate the noise tones of the fan. The aeroacoustic calculation results showed that the volute noise was much larger than the blade noise, and the noise mainly propagated from the outlet duct of the fan. Moreover, to account for the noise propagation, three calculation methods were used by applying different solid boundaries. Compared with the other methods, the FEM method, which accounted for the complex solid boundaries, produced good agreement and showed that the complex solid boundaries cannot be neglected in aeroacoustic predictions. The calculation results showed good agreement with the experimental results.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,