Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7152641 | Applied Acoustics | 2015 | 8 Pages |
Abstract
In this article, the investigation of the Lamb wave propagation in two-dimensional phononic crystals (PCs) composed of an array of periodic coating on a thin plate is presented. Compared with the traditional PCs usually consist of cylindrical scatters with uniform coatings in their exterior structure, the newly exterior coating structures with periodic alternant arrangement of two different materials are proposed. The band structures are calculated using finite element method. We discover that a complete band gap can be exhibited at low frequency. Furthermore, for a finite PCs plate, the computed transmission and resonance spectra shown an evident resonance nature which can be directly related to formation of the low-frequency gaps. The effects of different material parameters and arrangement mode of coating on the acoustic energy transmission and attenuation are also studied. Finally, the experimental transmission spectrum of the periodic coating PCs are also presented and compared with the numerical results. This study will provide useful support to the design of tuning band gaps and isolators in the low-frequency range.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Mao Liu, Jiawei Xiang, Yongteng Zhong,