Article ID Journal Published Year Pages File Type
7152799 Applied Acoustics 2014 11 Pages PDF
Abstract
A high rise building demands a high-speed elevator. Since a high-speed elevator has various transfer paths of noise transmitted from motor and rope to cabin interior, it is very difficult to solve the noise problem. Most research for noise reduction has been performed regarding passive noise control by using mainly absorption material and insulation material. In this study, while it is modeling as multiple-input and single-output with respect to transfer paths of high-speed elevator on conditions of stationary and driving states, the characterized frequency in the cabin is discovered through a contribution technique. It is able to replace by 1-dimensional model to control noise at a major contributed frequency. Also, a new active noise control technique has been proposed to control the cabin noise effectively at unpleasant area that is required to make quite zone for passenger. The Correlation Filtered X-LMS (Co-FXLMS) algorithm has been applied to control the dominant frequency noise that it has a high contribution. Simultaneously, this study has a proposed Moving Band Pass Filter (MBPF) to improve the performance of active noise control in the cabin which is able to apply a dynamic system with time variant states. Finally, we obtained the 8 dB noise reduction in the cabin at ear level and it has been proved that the modified active noise control using Co-FXLMS algorithm and MBPF is available to improve the performance of noise reduction.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,