Article ID Journal Published Year Pages File Type
7152819 Applied Acoustics 2014 7 Pages PDF
Abstract
Producing closed-cell foams is generally cheaper and simpler than open-cell foams. However, the acoustic and filtration efficiency of closed-cell foam materials is generally poor because it is very difficult for fluid or acoustic waves to penetrate into the material. A new method using shock waves to remove the membranes closing the cell pores (known as reticulation) and thus to improve the acoustic and filtration behavior of closed-cell foam material is presented. Various shock treatments have been carried out on polyurethane and polyimide foams and the following conclusions were drawn: (1) reticulation efficiency increased and thus the airflow resistivity and tortuosity decreased when increasing the amplitude of the shock treatment; (2) the rigidity of the foam is decreased; (3) the process is reliable and repeatable and (4) obtained acoustic performance is comparable to classical thermal reticulation.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,