Article ID Journal Published Year Pages File Type
7153603 Chinese Journal of Aeronautics 2018 13 Pages PDF
Abstract
This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation. For the proposed aircraft, comprehensive controllability analysis is performed to evaluate the controllability of each state as well as the margin to reject mismatched disturbance without any knowledge of the controller. Mismatched disturbance attenuation is ensured through a structured H-infinity controller tuned by a non-smooth optimization algorithm. Embedded with the H-infinity controller, an adaptive control law is proposed in order to mitigate matched system uncertainty and actuator fault. Input saturation is also considered by the modified reference model. Numerical simulation of the novel ducted fan aircraft is provided to illustrate the effectiveness of the proposed method. The simulation results reveal that the proposed adaptive controller achieves better transient response and more robust performance than classic Model Reference Adaptive Control (MRAC) method, even with serious actuator saturation.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , ,