Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7155011 | Communications in Nonlinear Science and Numerical Simulation | 2017 | 39 Pages |
Abstract
In this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo's derivatives) and the numerical scheme which are associated (here with discrete Grünwald-Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability of these points. We formulate explicit conditions under which a fractional system preserves positivity. We deduce also sufficient conditions to ensure order preserving. We deduce from these results a fractional persistence theorem which ensures that positivity, order preserving, equilibrium points and stability is preserved under a Caputo fractional embedding of a given differential equation. At the discrete level, the problem is more complicated. Following a strategy initiated by R. Mickens dealing with non local approximations, we define a non standard finite difference scheme for fractional differential equations based on discrete Grünwald-Letnikov derivatives, which preserves positivity unconditionally on the discretization increment. We deduce a discrete version of the fractional persistence theorem for what concerns positivity and equilibrium points. We then apply our results to study a fractional prey-predator model introduced by Javidi et al.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Jacky Cresson, Anna SzafraÅska,