Article ID Journal Published Year Pages File Type
7155067 Communications in Nonlinear Science and Numerical Simulation 2017 12 Pages PDF
Abstract
Binary discrete nonlinear Schrödinger equation is used to describe dynamics of two-species Bose-Einstein condensate loaded into an optical lattice. Linear inter-species coupling leads to Rabi transitions between the species. In the regime of strong nonlinearity, a wavepacket corresponding to condensate separates into localized and ballistic fractions. Localized fraction is predominantly formed by immiscible solitons consisted of only one species. Immiscible solitons are formed from initially non-separated states after transient chaotic regime. We calculate the finite-time Lyapunov exponent as a rate of wavepacket divergence in the Hilbert space. Appearance of immiscible solitons to spontaneous self-stabilization of the wavepacket. It is found that onset of chaos is accompanied by fast variations of interaction energy and energy of inter-site tunneling. Crossover to self-stabilization is accompanied by reduction of condensate density due to emittance of ballistically propagating waves.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,