Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
715514 | IFAC Proceedings Volumes | 2014 | 8 Pages |
To develop an efficient implementation of the maximally permissive deadlock avoidance policy (DAP) for complex resource allocation systems (RAS), a recent approach focuses on the identification of a set of critical states of the underlying RAS state-space, referred to as minimal boundary unsafe states. The availability of this information enables an expedient one-step-lookahead scheme that prevents the RAS from reaching outside its safe region. This paper presents a symbolic approach that provides those critical states. Furthermore, by taking advantage of certain structural properties regarding RAS safety, the presented method avoids the complete exploration of the underlying RAS state-space. Numerical experimentation demonstrates the efficiency of the approach for developing the maximally permissive DAP for complex RAS with large structure and state-spaces, and its potential advantage over similar approaches that employ more conventional representational and computational methods