Article ID Journal Published Year Pages File Type
7155448 Communications in Nonlinear Science and Numerical Simulation 2015 17 Pages PDF
Abstract
We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system with ten modes. We find numerically that the system has stationary, periodic and chaotic regimes. We establish phase diagrams to identify the different dynamical regimes as a function of the Rayleigh number and the viscoelastic material parameters.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,