Article ID Journal Published Year Pages File Type
7155599 Communications in Nonlinear Science and Numerical Simulation 2015 14 Pages PDF
Abstract
Complex and consolidated granular media or microcracked composites and metals usually exhibit a high level of nonlinearity in their elastic response already at low amplitudes of excitation. To quantify it, a proper nonlinear indicator y is introduced and its dependence on the excitation amplitude x is studied. The dependence of y on x is found in experiments to be a power law. Here we show that the different power law exponents measured for different materials could be predicted by proper classes of discrete models. An application is presented to link the exponent evolution and the changes of the microstructure due to the progression of damage mechanically induced.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,