Article ID Journal Published Year Pages File Type
7155867 Computers & Fluids 2018 35 Pages PDF
Abstract
In this paper, a direct immersed interface method (IIM) is proposed to solve two-phase incompressible Stokes equations with an interface and a piecewise constant viscosity on staggered grids. The velocity components and the pressure are placed in different grid points and the Marker and Cell (MAC) scheme is used for discretizing the momentum and continuity equations at regular grid points. At irregular grid points, correction terms are added to the finite difference scheme to offset the discontinuities. The correction terms are determined directly by an interpolation scheme using the values of both the velocity and pressure at nearby grid points. The resulted linear system of equations is rank-one deficient and is solved by the Uzawa iterative method. In each Uzawa iteration, an inner GMRES solver is used and preconditioned by the discrete Laplacian. The computed numerical solutions are second order accurate in the L∞ norm for both the velocity and pressure, which is demonstrated in numerical tests. Compared with the augmented interface method (AIIM), one of advantages of this approach is that it avoids the costs for introducing augmented variables and difficulties in solving them from the corresponding Schur complement system. Hence, this new method is easier to implement and computationally more efficient.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,