Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
715686 | IFAC Proceedings Volumes | 2010 | 6 Pages |
Abstract
In this paper we present a stochastic model predictive control (SMPC) approach for networked control systems (NCSs) that are subject to time-varying sampling intervals and time-varying transmission delays. These network-induced uncertain parameters are assumed to be described by random processes, having a bounded support and an arbitrary continuous probability density function. Assuming that the controlled plant can be modeled as a linear system, we present a SMPC formulation based on scenario enumeration and quadratic programming that optimizes a stochastic performance index and provides closed-loop stability in the mean-square sense. Simulation results are shown to demonstrate the performance of the proposed approach.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics