Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7160661 | Energy Conversion and Management | 2016 | 8 Pages |
Abstract
A modification of the simplified Distributed Activation Energy Model is proposed to simulate the pyrolysis of biomass under parabolic and exponential temperature increases. The pyrolysis of pine wood, olive kernel, thistle flower and corncob was experimentally studied in a TGA Q500 thermogravimetric analyzer. The results of the measurements of nine different parabolic and exponential temperature increases for each sample were employed to validate the models proposed. The deviation between the experimental TGA measurements and the estimation of the reacted fraction during the pyrolysis of the four samples under parabolic and exponential temperature increases was lower than 5 °C for all the cases studied. The models derived in this work to describe the pyrolysis of biomass with parabolic and exponential temperature increases were found to be in good agreement with the experiments conducted in a thermogravimetric analyzer.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Antonio Soria-Verdugo, Elke Goos, Jorge Arrieta-SanagustÃn, Nestor GarcÃa-Hernando,