| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 7162051 | Energy Conversion and Management | 2015 | 14 Pages | 
Abstract
												The paper presents a layout of a highly boosted Ethanol Direct Injected engine in order to explore the limits of down-sizing for replacing high-displacement gasoline engines, which represents a powerful means of reducing fuel consumption and engine-out emissions at reduced production costs. The substitution of high-displacement engines (2.4- or 3.0-l) by a down-sized turbocharged Ethanol Direct Injected engine is studied. This document describes the detailed layout of all engine hardware and in particular, the cylinder head structure including the optimized intake and exhaust manifolds as well as implemented direct injection injectors. The work continues with a presentation of the experimental data obtained at the engine test rig. A series of experimental data is also presented for the down-sized engine mounted in a car as a replacement for its original high-displacement engine. Substantial fuel consumption gains are obtained as well as values of engine torque for the down-sized, down-speeded prototype engine, which makes it possible to replace engines with much higher displacements. As a result the maximum obtained efficiency of the 1.4 l prototype engine with twin-stage compressor reaches a value of 3250 kPa brake pressure at 44% efficiency. The present work is a very new and different approach compared to previous published studies on ethanol and down-sized engines due to the fact that the Brazilian hydrated ethanol fuel (7% water content) has a major charge effect compared to North American and European Gasoline and alcohol fuels (consult Table 1). This means that more aggressive down-sizing, turbo-charging and mixture stratification approaches can be applied as the following chapters will explain in detail.
											Related Topics
												
													Physical Sciences and Engineering
													Energy
													Energy (General)
												
											Authors
												José Guilherme Coelho Baêta, Michael Pontoppidan, Thiago R.V. Silva, 
											