Article ID Journal Published Year Pages File Type
7163134 Energy Conversion and Management 2015 11 Pages PDF
Abstract
Fault tolerant control of five-phase brushless direct current (BLDC) machines is gaining more importance in high-safety applications such as offshore wind generators and automotive industries. In many applications, traditional controllers (such as PI controllers) are used to control the stator currents under faulty conditions. These controllers have good performance with dc signals. However, in the case of missing one or two of the phases, appropriate reference currents of these machines have oscillatory dynamics both in phase- and synchronous-reference frames. Non-constant nature of these reference values requires the implication of fast current controllers. In this paper, model predictive deadbeat controllers are proposed to control the stator currents of five-phase BLDC machines under normal and faulty conditions. Open circuit fault is considered for both one and two stator phases, and the behaviour of proposed controlling method is evaluated. This evaluation is generally focused on first, sensitivity of proposed controlling method and second, its speed in following reference current values under transient states. Proposed method is simulated and is verified experimentally on a five-phase BLDC drive.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,