Article ID Journal Published Year Pages File Type
7169158 Engineering Fracture Mechanics 2018 14 Pages PDF
Abstract
The interlaminar fracture toughness properties based on the double cantilever beam test of the multilayered stitched carbon/epoxy/multiwall carbon nanotube prepreg woven composites was investigated. The fracture toughness based on beam theory and modified beam theory of the stitched/nano and stitched composites showed 3-fold and 2-fold increases compared to the base and base/nano composites, respectively. The fracture toughness resistance to arrest the crack propagation in the stitched/nano composite was primarily due to out-of-plane directional stitching fiber bridging and was secondarily due to in-plane directional biaxial fiber bridging and multiwall carbon nanotubes. Fracture surfaces of the stitched/nano had multiple matrix and brittle tensile filament breakages in carbon stitching yarn and ductile filament breakages in the para-aramid stitching yarns where filament/matrix debonding and filament pull-out were identified.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,