Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
717068 | IFAC Proceedings Volumes | 2013 | 6 Pages |
Abstract
The problem of boundary control in first order linear parameter varying (LPV) hyperbolic systems with dynamics associated with the boundary conditions is considered in this article. By means of Lyapunov based techniques, some sufficient conditions are derived for the exponential stability of these infinite dimensional systems. A polytopic approach is developed in order to synthesize a robust boundary control which guarantees the exponential stability for a given convex parameter set. An application using a Poiseuille flow control experimental setup illustrates the main results.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics