Article ID Journal Published Year Pages File Type
7170761 Extreme Mechanics Letters 2017 15 Pages PDF
Abstract
Wires embedded in an infinite soft matrix may buckle into a three-dimensional helical mode upon compression. Based on minimization of potential energy, we present a theoretical analysis of three-dimensional helical buckling of wires embedded in matrix. The buckling spacing and amplitudes are deduced, which are further verified by parallel FEM simulations. It is suggested that, the buckled profile is almost perfectly circular in the axial direction; with increasing compression, the buckling spacing decreases almost linearly, while the amplitude scales with the 1/2 power of the compressive strain. Besides the transition strain from 2D mode to 3D helical mode decreases with the Young's modulus of the wire, and approaches to ∼1.25% when the modulus is high enough. This study may shed some lights on the buckling behaviors of wires embedded in matrix and provide some useful instructions of manufacturing complex structures.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,