Article ID Journal Published Year Pages File Type
7171630 International Journal of Fatigue 2018 11 Pages PDF
Abstract
Cylindrical specimens of ϕ5 mm were cut from the weld bead of 50 mm thick MIG-welded Al-Mg alloy (Al-5083) plates with two different filler materials: Al-5183 (commonly used) and Al-5.8%Mg (special hardened new alloy). Load-controlled fatigue tests were done at different stress-ratios (R=-1,-0.5,0.1,0.5) using sinusoidal wave at 30 Hz and the performance of three popular finite-life empirical models: Gerber's parabola, Smith-Watson-Topper's model and Walker's model, was studied using the experimental data. Fatigue lives and endurance limits of both materials did not differ significantly, but they got reduced when the R-ratio was increased and the endurance limit followed the Gerber's parabola. A non-monotonic trend in the slope of S-N curves was observed: first increases and then decreases. Fracture surface observations revealed majority of surface-initiated failures at lower R-ratios (-1,-0.5), while for higher R-ratios (0.1,0.5), defect-induced failures were predominant. This shift in crack initiation site was attributed to the local cyclic plasticity due to stress-concentration and demonstrated using elastic-plastic finite element (FE) simulations. The detrimental effect of mean-stress on fatigue lives was attributed to combined effects of reduction in crack-nucleation time: due to stress concentration at defects and the crack closure effects. The three fatigue life models predicted monotonic decrease in slopes of S-N curves and thus did not give best results. A new model, based on Walker's model, was proposed which was able to capture the observed non-monotonic trend of the slopes of S-N curves and predicted fatigue lives better than these models.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,