Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7173089 | International Journal of Impact Engineering | 2017 | 32 Pages |
Abstract
Structural responses and damages under blast loading environments are critical to structural and personnel safety. The blast scenarios involving close-in detonations are attracting increasingly more attentions over the last few decades due to the rising of terrorism. Under close-in detonations, structural elements tend to fail in a brittle mode including shear, concrete crater and spall. In such loading scenarios, the structural designated loading capacity which is usually based on flexural deformation assumption is not fully developed. To provide high-level structural protection, high performance concretes with varying fibre additions are now widely investigated and used in blast resistance designs. In the present study, field blast tests results on reinforced concrete slabs under close-in detonations are presented. Performances of slabs made of normal strength concrete and steel fibre reinforced concrete are compared and discussed. Besides conventional steel rebar reinforcement, new reinforcement scheme i.e. hybrid steel wire mesh-micro steel fibre reinforcement is investigated through the laboratory static tests and field blast tests. Furthermore, a numerical study based on Multi-Material ALE and Lagrangian algorithm is carried out to further investigate the field tests' phenomenon.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Li Jun, Wu Chengqing, Hao Hong, Su Yu, Li Zhong-Xian,