Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7174436 | International Journal of Non-Linear Mechanics | 2018 | 40 Pages |
Abstract
We analyze the pattern formation due to dislocations under cyclic loading resulting from the Walgraef-Aifantis model. The model consists of a set of partial differential equations of the reaction-diffusion type in the one dimensional finite space with two different diffusion-like coefficients, for the mobile (free to move when the applied resolved shear stress in the slip plane exceeds a certain threshold) and for the immobile (of slow movement or trapped) dislocations. We derive analytically the Turing spatial and Andronov-Hopf temporal instabilities emanating from the homogeneous solutions and construct the complete bifurcation diagram of the far-from-equilibrium spatio-temporal patterns, with respect to the applied stress and the size of the domain. Finally, we analyze the symmetric properties of all branches of both steady and oscillating far-from-equilibrium regimes.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Konstantinos G. Spiliotis, Lucia Russo, Constantinos Siettos, Elias C. Aifantis,