Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7175926 | Journal of Fluids and Structures | 2015 | 13 Pages |
Abstract
Direct numerical simulation is used to study the loading of a rigid, circular cylinder impacted by a 2D vortex. The vortex travels within a stream of fluid characterized by Reynolds number of 150. Vortex impact occurs at twenty-five different times within one vortex shedding cycle. Substantial variation is observed in the maximum values of the drag and lift force coefficients. This variation is due to interaction between the impinging vortex and those attached to the cylinder. As the radius of the impinging vortex is increased from one to three times the cylinder's diameter, the variation in maximum force coefficients with time of impact decreases. The variation decreases because the larger vortex alters the flow field and vortex shedding cycle prior to impacting the cylinder. For structures impacted by a vortex similar in size, significant under-prediction of the maximum loading may occur if variation in loading with vortex impact time is not considered.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Matthew N. Strasser, R. Panneer Selvam,