Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7175935 | Journal of Fluids and Structures | 2015 | 20 Pages |
Abstract
Fluctuating pressures are a critical consideration in the life-prediction of thin-gauge hot-structures operating in high-speed flow. Sources include both boundary layer turbulence and self-induced components, where the latter arises from panel vibrations. While a considerable body of research is available for the structural response of thin-gauge panels to self-induced pressure fluctuations, the response to boundary layer turbulence is not well-understood due to the complexity in modeling the loads. Important open issues are the degree of coupling between the boundary layer induced fluctuating loads and the thermo-structural response, and also the potential for interactions between a turbulent boundary layer and structural response to result in structural instabilities. This study seeks to address these issues by incorporating a phenomenological model for turbulent boundary layer loads into an aerothermoelastic framework. The enhanced aerothermoelastic model is then used to study the combined effect of self- and boundary layer-induced fluctuating pressures on responses of simple panels, and to characterize features in the turbulent boundary layer loads that can lead to large amplitude structural vibrations. The developed phenomenological model predicts that the magnitude of the boundary layer induced fluctuating pressure increases with increasing panel inclination, and decreases with increasing temperature. Furthermore, it is found that both RMS magnitude and phase angle of the boundary layer induced pressure loads play key roles in panel response. Certain combinations of these features, coupled with the self-induced pressure fluctuations, are found to cause onset of fluid-structural instabilities earlier than observed when pressure fluctuations from the turbulent boundary layer are either neglected or decoupled from the panel response.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Rohit Deshmukh, Adam J. Culler, Brent A. Miller, Jack J. McNamara,