Article ID Journal Published Year Pages File Type
7178695 Mechanics of Materials 2014 12 Pages PDF
Abstract
The collective properties of dislocations in MgO are investigated in the high temperature regime and at constant strain rate with 3D Dislocation Dynamics simulations. Intersections between slip systems 1/2〈1 1 0〉{1 1 0} and 1/2〈1 1 0〉{1 0 0} allow essentially two types of junction reactions. These junctions are energetically stable and are expected to promote strong forest strengthening at high temperature. Large-scale DD simulations show that MgO strain hardening at high temperature may be dominated by forest reactions. Important parameters for dislocation density based modeling of MgO plasticity are finally calculated and verified to be consistent with experimental observations.
Keywords
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,