Article ID Journal Published Year Pages File Type
7178711 Mechanics of Materials 2014 21 Pages PDF
Abstract
Several popular effective medium approximations for elastic constants of random composites are reformulated in terms of a pair of canonical functions and their transform variables. This choice of reformulation enables easier comparisons of the results of all these methods with rigorous bounds. Furthermore, insight into the various methods gained by taking this point of view suggests a number of new effective medium approximations that, in some cases, are natural variants and/or combinations (i.e., hybrids) of the existing ones, and in other cases are new ones based in part on the bounds themselves. Numerical comparisons are given for several standard inclusion models - including spherical, needle, and penny-shaped inclusions - as well as the penetrable sphere model. Of the various alternatives considered, a new method called the split-step differential (SSD) scheme is one of the more useful ones, as it simplifies the differential scheme by replacing half of this scheme's integration routines with a simple update formula for the bulk modulus.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,