Article ID Journal Published Year Pages File Type
718542 IFAC Proceedings Volumes 2010 6 Pages PDF
Abstract

An artificial neural network (ANN) model for the prediction of glucose concentration in a glucose-insulin regulation system for type 1 diabetes mellitus is developed and validated by using the Continuous Glucose Monitoring System (CGMS) data. This network consists of structured framework according to the compartmental structure of the Hovorka-Wilinska model (HWM), and an additional update scheme is also included, which can improve the prediction accuracy whenever new measurements are available. The model is tested on a real case, as well as long term prediction has been carried over an extended time horizon from 30 minutes to 4 hours, and the quality of prediction is assessed by examining the values of the four indexes. For instant, the overall Clarke error grid (CEG) Zone A value is up to 100% for the 30-min-ahead prediction horizon with update. Therefore, for practical purpose, our results indicate that the promising prediction performance can be achieved by our proposed structured recurrent neural network model (SRNNM).

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics