Article ID Journal Published Year Pages File Type
719347 IFAC Proceedings Volumes 2009 6 Pages PDF
Abstract

The paper proposes an integrated approach to the design optimization of parallel manipulators, which is based on the concept of the workspace grid and utilizes the goal-attainment formulation for the global optimization. To combine the non-homogenous design specification, the developed optimization technique transforms all constraints and objectives into similar performance indices related to the maximum size of the prescribed shape workspace. This transformation is based on the dedicated dynamic programming procedures that satisfy computational requirements of modern CAD. Efficiency of the developed technique is demonstrated via two case studies that deal with optimization of the kinematical and stiffness performances for parallel manipulators of the Orthoglide family.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,