Article ID Journal Published Year Pages File Type
719374 IFAC Proceedings Volumes 2009 6 Pages PDF
Abstract

New technologies make way for “intelligent” transmitters by integrating new functionalities: error measurement corrections, self-adjustment, self-diagnosis for measurement and transmitter status, online reconfiguration, and digital bidirectional communication. Industrialists are taking advantage of more accurate measurements, cost reductions and facilities. For industrial risk prevention, new dependability issues are arising. Functionalities such as self-diagnosis and digital communication seem to be in favour of control systems availability. On the other hand, the high amount of electronics and programmable units implies new failure causes and modes which are usually not well known. In this paper, dependability issues for intelligent transmitters are discussed and a reliability model is proposed. By using a Goal Tree – Success Tree (GTST) technique, both functional and material aspects of an intelligent transmitter pattern are included. Material-material, material-function, and function-function relationships are then demonstrated in Master Logic Diagrams (MLD). These results are proposed as support for further case studies. For example, the impact of any material failure on any function, and the reliability of the main functions, can be assessed using this kind of model. Other dependability tools can take advantage of this reliability pattern, for example when the behavioural aspects of complex systems are undetermined.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,