Article ID Journal Published Year Pages File Type
719428 IFAC Proceedings Volumes 2009 6 Pages PDF
Abstract

Sepsis occurs frequently in the intensive care unit (ICU) and is a leading cause of admission, mortality, and cost. Treatment guidelines recommend early intervention, however positive blood culture results may take up to 48 hours. Insulin sensitivity (SI) is known to decrease with worsening condition and could thus be used to aid diagnosis. Some glycemic control protocols are able to accurately identify insulin sensitivity in real-time.Receiver operator characteristic (ROC) curves and cut-off SI values for sepsis diagnosis were calculated for real-time model-based insulin sensitivity from glycemic control data of 36 patients with sepsis. Patients were identified as having sepsis based on a clinically validated sepsis score (ss) of 2 or higher (ss = 0–4 for increasing severity). A clinical biomarker was calculated from patient clinical data to maximize the discrimination between cohorts.Insulin sensitivity as a sepsis biomarker for diagnosis of severe sepsis achieves a 50% sensitivity, 76% specificity, 4.8% PPV, and 98.3% NPV at a SI cut-off value of 0.00013 L*mU min−1. A clinical biomarker combining SI, temperature, heart rate, respiratory rate, blood pressure, and their respective hourly rates of change achieves 73% sensitivity, 80% specificity, 8.4% PPV, and 99.2% NPV. Thus, a clinical biomarker provides an effective real-time negative predictive diagnostic for severe sepsis. Examination of both inter- and intra-patient statistical distribution of this biomarker and sepsis score show potential avenues to improve the positive predictive value.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics