Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7195234 | Reliability Engineering & System Safety | 2018 | 11 Pages |
Abstract
To optimise operation and maintenance, knowledge of the ability to perform the required functions is vital. The ability is governed by the usage of the system (operational issues) and availability aspects like reliability of different components. This paper proposes a Bayesian hierarchical model (BHM)-based prognostics approach applied to Li-ion batteries, where the goal is to analyse and predict the discharge behaviour of such batteries with variable load profiles and variable amounts of available discharge data. The BHM approach enables inferences for both individual batteries and groups of batteries. Estimates of the hierarchical model parameters and the individual battery parameters are presented, and dependencies on load cycles are inferred. A BHM approach where the operational and reliability aspects end of life (EoD) and end of life (EoL) is studied where its shown that predictions of EoD can be made accurately with a variable amount of battery data. Without access to measurements, e.g. predicting a new battery, the predictions are based only on the prior distributions describing the similarity within the group of batteries and their dependency on the load cycle. A discharge cycle dependency can also be identified in the result giving the opportunity to predict the battery reliability.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Madhav Mishra, Jesper Martinsson, Matti Rantatalo, Kai Goebel,