Article ID Journal Published Year Pages File Type
7195267 Reliability Engineering & System Safety 2018 26 Pages PDF
Abstract
Although stainless steels (SSs) have excellent general corrosion resistance, they are nevertheless susceptible to pitting corrosion. The variation of pit depth and density is significant for the prediction of likelihood of corrosion damage occurring in service. Among the available pitting corrosion models, it is difficult to identify a specific model capable of characterizing all the pit formation processes observed and one that can be used for estimating the evolution of pit density distribution with time. A physics-based multi-state Markov model giving a full description of pitting corrosion states is presented. The transition rates used in the model are determined by fitting the model to experimental data. The variation of pit depth and density is simulated. The simulation is verified by experimental scenarios of SS exposed to chloride-containing environments.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,