Article ID Journal Published Year Pages File Type
7195713 Reliability Engineering & System Safety 2015 19 Pages PDF
Abstract
A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the thermodynamic behavior of the so-called dense gas flows, - i.e. flows of gases characterized by high molecular weights and complex molecules, working in thermodynamic conditions close to the liquid-vapor saturation curve - are calibrated by means of Bayesian inference from reference aerodynamic data for a dense gas flow over a wing section. Flow thermodynamic conditions are such that the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the aim of assessing the proposed methodology, synthetic calibration data - specifically, wall pressure data - are generated by running the numerical solver with a more complex and accurate thermodynamic model. The statistical model used to build the likelihood function includes a model-form inadequacy term, accounting for the gap between the model output associated to the best-fit parameters and the true phenomenon. Results show that, for all of the relatively simple models under investigation, calibrations lead to informative posterior probability density distributions of the input parameters and improve the predictive distribution significantly. Nevertheless, calibrated parameters strongly differ from their expected physical values. The relationship between this behavior and model-form inadequacy is discussed.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,