Article ID Journal Published Year Pages File Type
7196401 Theoretical and Applied Fracture Mechanics 2014 9 Pages PDF
Abstract
Mechanical behaviour of quasi-brittle materials, such as concrete and rock, is controlled by the generation and growth of micro-cracks. A 3D lattice model is used in this work for generating micro-crack populations. In the model, lattice sites signify solid-phase blocks and lattice bonds transmit forces and moments between adjacent sites. Micro-cracks are generated at the interfaces between solid-phase blocks, where initial defects are allocated according to given size distribution. This is represented by removal of bonds when a criterion based on local forces and defect size is met. The growing population of micro-cracks results in a non-linear stress-strain response, which can be characterised by a standard damage parameter. This population is analysed using a graph-theoretical approach, where graph nodes represent failed faces and graph edges connect neighbouring failed faces, i.e. coalesced micro-cracks. The evolving structure of the graph components is presented and linked to the emergent non-linear behaviour and damage. The results provide new insights into the relation between the topological structure of the population of micro-cracks and the material macroscopic response. The study is focused on concrete, for which defect sizes were available, but the proposed methodology is applicable to a range of quasi-brittle materials with similar dominant damage mechanisms.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,