Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7196429 | Theoretical and Applied Mechanics Letters | 2018 | 9 Pages |
Abstract
A theoretical analysis is presented to predict the nonlinear thermo-structural response of metallic sandwich panels with truss cores under through-thickness gradient temperature field, which is a common service condition for metallic thermal protection system (TPS). The in-plane temperature distribution is assumed to be uniform, and through-thickness temperature field is determined by heat conduction. Two typical conditions are analyzed: nonlinear thermal bending in fixed inside surface temperature, and thermal post-buckling in fixed temperature difference between two surfaces. Temperature-dependent mechanical properties are considered, and gradient shear stiffness and bending stiffness due to non-uniform temperature is included. Results indicate that the temperature-dependent material properties obviously affect bending resistance; however, the effect is negligible on post-buckling behavior. Influences of geometric parameters on the thermo-structural behavior of the sandwich panel according to the present theoretical model are discussed.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Wu Yuan, Hongwei Song, Chenguang Huang,