Article ID Journal Published Year Pages File Type
7196496 Theoretical and Applied Mechanics Letters 2017 9 Pages PDF
Abstract
Shock tubes are devices which are used in the investigation of high speed and high temperature flow of compressible gas. Inside a shock tube, the interaction between the reflected shock wave and boundary layer leads to a complex flow phenomenon. Initially a normal shock wave is formed in the shock tube which migrates toward the closed end of the tube and that in turn leads to the reflection of shock. Due to the boundary layer interaction with the reflected shock, the bifurcation of shock wave takes place. The bifurcated shock wave then approaches the contact surface and shock train is generated. Till date only a few studies have been conducted to investigate this shock train phenomenon inside the shock tube. For the present study a computational fluid dynamics (CFD) analysis has been performed on a two dimensional axi-symmetric model of a shock tube using unsteady, compressible Navier-Stokes equations. In order to investigate the detailed characteristics of shock train, parametric studies have been performed by varying different parameters such as the shock tube length, diameter, pressure ratio used inside the shock tube.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,