| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 7196526 | Theoretical and Applied Mechanics Letters | 2017 | 16 Pages |
Abstract
A bilayer membrane acoustic metamaterial was proposed to overcome the influence of the mass law on traditional acoustic materials and obtain a lightweight thin-layer structure that can effectively isolate low frequency noise. The finite element analysis (FEA) results agree well with the experimental results. It is proved that the sound transmission losses (STLs) of the proposed structures are higher than those of same surface density acoustic materials. The introduction of the magnetic mass block is different from the traditional design method, in which only a passive mass block is fixed on the membrane. The magnetic force will cause tension in the membrane, increase membrane prestress, and improve overall structural stiffness. The effects of the geometry size on the STLs are discussed in detail. The kind of method presented in this paper can provide a new means for engineering noise control.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Nansha Gao, Hong Hou, Yihao Mu,
