Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7205667 | Additive Manufacturing | 2018 | 41 Pages |
Abstract
The interest of selective laser melting (SLM) Al-based alloys for lightweight applications, especially the rare earth element Sc modified Al-Mg alloy, is increasing. In this work, high-performance Al-Mg-Sc-Zr alloy was successfully fabricated by SLM. The phase identification, densification behavior, precipitate distribution and mechnical properties of the as-fabricated parts at a wide range of processing parameters were carefully characterized. Meanwhile, the evolution of nanoprecipitation behavior under various scan speeds is revealed and TEM analysis of precipitates shows that a small amount of spherical nanoprecipitates Al3(Sc,Zr) were embedded at the bottom of the molten pool using a low scan speed. While no precipitates were found in the matrix using a relatively high scan speed due to the combined effects of the variation of Marangoni convection vector, ultrashort lifetime of liquid and the rapid cooling rate. An increased hardness and a reduced wear rate of 94 HV0.2 and 1.74â¯Ãâ¯10â4â¯mm3N-1â¯m-1 were resultantly obtained respectively as a much lower scan speed was applied. A relationship between the processing parameters, the surface tension, the convection flow, the precipitation distribution and the resultant mechanical properties has been well established, demonstrating that the high-performance of SLM-processed Al-Mg-Sc-Zr alloy could be tailored by controlling the distribution of nanoprecipitates.
Related Topics
Physical Sciences and Engineering
Engineering
Industrial and Manufacturing Engineering
Authors
Han Zhang, Dongdong Gu, Jiankai Yang, Donghua Dai, Tong Zhao, Chen Hong, Andres Gasser, Reinhart Poprawe,