Article ID Journal Published Year Pages File Type
7205709 Additive Manufacturing 2018 11 Pages PDF
Abstract
To increase the mechanical strength of Zircaloy-4 cladding at high temperatures, partial oxide dispersion-strengthened (ODS) treatment of the cladding tube surface was achieved by using laser processing technology. The microstructural characteristics and stability of the ODS layer formed on the Zircaloy-4 cladding surface were analyzed at temperatures up to 1000 °C. Ring tensile and loss-of-coolant accident (LOCA) simulation tests were performed to evaluate the mechanical properties of the surface ODS treated Zircaloy-4 cladding tube. The formation and uniform distribution of Y2O3 particles formed in the Zr matrix were identified, and the stability of the particles was confirmed up to 1000 °C. When compared to the reference Zircaloy-4 cladding tube, the surface ODS treated Zircaloy-4 cladding tube showed improved mechanical properties at both room temperature and 500 °C, as well as under LOCA simulation conditions.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , , , ,