Article ID Journal Published Year Pages File Type
7205731 Additive Manufacturing 2018 10 Pages PDF
Abstract
A space frame lattice and shell finite element model was created to predict the linearly elastic response of test coupons made with a modified polyetherimide (PEI) material. This approach was employed because it provides an efficient procedure to design and optimize 3D printed parts. The modeled coupons were 3D printed by extrusion of molten thermoplastic polymer. The finite element model was verified by comparing the predicted values of elastic modulus, shear modulus, and Poisson's ratio in two material directions with the corresponding values obtained from quasi-static mechanical experiments. The values obtained for the moduli and the Poisson's ratios from the finite element model matched closely with those obtained from the experiments.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,