Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7205924 | Additive Manufacturing | 2018 | 20 Pages |
Abstract
Magnetically isotropic bonded magnets with a high loading fraction of 70â¯vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts. The density of the printed magnet is â¼ 5.2â¯g/cm3. The room temperature magnetic properties are: intrinsic coercivity Hci â¯=â¯8.9â¯kOe (708.2â¯kA/m), remanence Br â¯=â¯5.8â¯kG (0.58â¯T), and energy product (BH)maxâ¯=â¯7.3 MGOe (58.1â¯kJ/m3). The as-printed magnets are then coated with two types of polymers, both of which improve the thermal stability as revealed by flux aging loss measurements. Tensile tests performed at 25â¯Â°C and 100â¯Â°C show that the ultimate tensile stress (UTS) increases with increasing loading fraction of the magnet powder, and decreases with increasing temperature. AC magnetic susceptibility and resistivity measurements show that the 3D printed Nd-Fe-B bonded magnets exhibit extremely low eddy current loss and high resistivity. Finally, we demonstrate the performance of the 3D printed magnets in a DC motor configuration via back electromotive force measurements.
Related Topics
Physical Sciences and Engineering
Engineering
Industrial and Manufacturing Engineering
Authors
Ling Li, Kodey Jones, Brian Sales, Jason L. Pries, I.C. Nlebedim, Ke Jin, Hongbin Bei, Brian K. Post, Michael S. Kesler, Orlando Rios, Vlastimil Kunc, Robert Fredette, John Ormerod, Aaron Williams, Thomas A. Lograsso, M. Parans Paranthaman,