Article ID Journal Published Year Pages File Type
7206077 International Journal of Rock Mechanics and Mining Sciences 2018 9 Pages PDF
Abstract
Rock joints will undergo a sequence of cyclic shearing loadings during a seismic event. However, the effect of cyclic shear loading on the energy-absorbing rock bolts has never been studied before. Laboratory shear experiments were carried out to study the shear behaviour of rock joints reinforced by the energy-absorbing rock bolts under cyclic loading condition. The results illustrated that the support effect of the energy-absorbing rock bolts was very small after the first cycles in the cyclic shear experiments. In the case of small cyclic distances, the shear resistance of the energy-absorbing rock bolts will gradually recover after the shear displacement has exceeded the cyclic distance in the subsequent shear experiment after 5 cycles. In the case of large cyclic distances, no recovery of shear resistance was found in the subsequent shear experiment, indicating that the energy-absorbing rock bolts had completely lost its supporting role after cyclic shear loading. A new index of shear energy loss ratio (SELR) was proposed to evaluate the shear behaviour of energy-absorbing rock bolt and rock joint under cyclic shear loading condition. The results showed that the SELR of rock joints was commonly less than 20%. However, the SELR of rock bolts could reach nearly 100% when the cyclic distance was larger than 8 mm. When the cyclic distance was 4 mm or 6 mm, the SELR of the fully encapsulated rock bolts almost reached 100%. However, the SELR of the energy-absorbing rock bolts were located in the range of 50-80% for the same condition. The results indicated that the shear behaviour of a rock bolt inserted in a rock joint was strongly influenced by cyclic shear loading. The shear performance of the energy-absorbing rock bolts was better than the fully encapsulated rock bolts under cyclic shear loading conditions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , , ,