Article ID Journal Published Year Pages File Type
7206906 Journal of the Mechanical Behavior of Biomedical Materials 2018 9 Pages PDF
Abstract
β-tricalcium phosphate (β-TCP) bioceramic, which is a prevalent bone graft, is deficient in mechanical strength and mediating the biological functions. In the present study, β-tricalcium phosphate composite bioceramics (TCP/SPNs) were prepared by introducing SrO-P2O5-Na2O based (SPN) sintering additive. With increasing mole ratio of SrO to P2O5, the SPN tended to crystallize. In the liquid-phase sintering process, β-TCP reacted with SPN, producing new compounds. The difference in characteristic of SPN additive affected the compressive strength and cell-biological response of the fabricated TCP/SPNs. By selecting SPN with appropriate formulation, the TCP/SPNs not only could more than double their compressive strength, but also improved the cell viability, promoted osteogenic differentiation and inhibited osteoclastic activities. Taken together, this work establishes a beneficial strategy to improve the overall performance of calcium phosphate bioceramic for application in bone regeneration.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , , , , ,