Article ID Journal Published Year Pages File Type
720697 The Journal of China Universities of Posts and Telecommunications 2013 7 Pages PDF
Abstract

The throughput gain obtained by linear network coding (LNC) grows as the generation size increases, while the decoding complexity also grows exponentially. High decoding complexity makes the decoder to be the bottleneck for high speed and large data transmissions. In order to reduce the decoding complexity of network coding, a segment linear network coding (SLNC) scheme is proposed. SLNC provides a general coding structure for the generation-based network coding. By dividing a generation into several segments and restraining the coding coefficients of the symbols within the same segment, SLNC splits a high-rank matrix inversion into several low-rank matrix inversions, therefore reduces the decoding complexity dramatically. In addition, two coefficient selection strategies are proposed for both centrally controlled networks and distributed networks respectively. The theoretical analysis and simulation results prove that SLNC achieves a fairly low decoding complexity at a cost of rarely few extra transmissions.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering